
Decision Procedures
for Vulnerability Analysis

June 24, 2020

Benjamin Farinier
Director — Marie-Laure Potet
Supervisor — Sébastien Bardin
Reviewer — Thomas Jensen
Reviewer — Sylvain Conchon
Examiner — Mihaela Sighireanu
Examiner — Jean Goubault-Larrecq
Examiner — Roland Groz

Introduction
Heartbleed

On April 7, 2014, the Heartbleed software
vulnerability is made public
• between 24% and 55% of “secure” servers
were affected

• due to a bug introduced on March 14, 2012
in the OpenSSL cryptography library

• allows an attacker to read secret data form
the memory of a vulnerable server

The vulnerability is caused by a buffer overflow
• a kind of vulnerability known since 1972
• already exploited by the Morris computer
worm in 1988

Long-standing causes known as dangerous
are still the source of major vulnerabilities
=⇒ need for research in formal verification

June 24, 2020 — Benjamin Farinier — 1/41

Introduction
Formal Verification

Formal verification aims to prove or disprove the correctness of a system with
respect to a certain specification or property

Used in a growing number of contexts
• Cryptographic protocols
• Electronic hardware
• Software source code

Core concept: M |= P
• M: the model of the system
• P : the property to be checked
• |= : the algorithmic check

June 24, 2020 — Benjamin Farinier — 2/41

Introduction
Over-Approximation

correct behaviours
incorrect behaviours

object behaviours
model behaviours

With an over-approximating model:
• All object behaviors are captured
by the model

• But some model behaviors are not
realizable by the object

⇒ False positive

Some over-approximation techniques:
• Abstract Interpretation
• Hoare Logic
• . . .

June 24, 2020 — Benjamin Farinier — 3/41

Introduction
Under-Approximation

correct behaviours
incorrect behaviours

object behaviours
model behaviours

With an under-approximating model:
• All model behaviors are realizable
by the object

• But some object behaviors are not
captured by the model

⇒ False negative

Some under-approximation techniques:
• Bounded Model Checking (BMC)
• Symbolic Execution (SE)
• . . .

June 24, 2020 — Benjamin Farinier — 4/41

Introduction
Symbolic Execution

int main () {
int x = input ();
int y = input ();
int z = 2 * y;
if (z == x) {

if (x > y + 10)
printf (" Success !\n");

}
printf (" Failure ...\n");

}

x = input()
y = input()
z = 2 * y

z == x

x > y + 10Γ , > ∧ 2y0 6= x0

Γ , > ∧ 2y0 = x0 ∧ x0 > y0 + 10Γ , > ∧ 2y0 = x0 ∧ x0 ≤ y0 + 10

σ , ∅, Γ , >

σ , {x = x0, y = y0, z = 2y0}

Γ , > ∧ 2y0 = x0

σ: symbolic state
Γ: path predicate

SMT Solver

{x0 = 22, y0 = 11}

June 24, 2020 — Benjamin Farinier — 5/41

Introduction
Limitations and Successes

Symbolic Execution suffers several limitations...
• Path explosion
• Memory model
• Constraint solving
• Interactions with the environment

...but still leads to several successful applications

SAGE, P.Godefroid et al.
⇒ x86 instruction level SE

KLEE, C.Cadar et al.
⇒ LLVM bytecode level SE

It is now a question of applying it to vulnerability analysis

June 24, 2020 — Benjamin Farinier — 6/41

Introduction
Motivating Example

define SIZE

void get_secret (char secr []) {
// Retrieve the secret
} int main (int argc , char *argv []) {

char secr[SIZE];
void read_input (char src [], char dst []) { char inpt[SIZE];

int i = 0;
while (src[i]) { if (argc != 2) return 0;

dst[i] = src[i];
i++; get_secret (secr);

} read_input (argv [1] , inpt);
}

if (validate (secr , inpt)) {
int validate (char secr [], char inpt []) { printf (" Success !\n");

int b = 1; }
for (int i = 0; i < SIZE; i++) { else {

b &= secr[i] == inpt[i]; printf (" Failure ...\n");
} }
return b; }

}

June 24, 2020 — Benjamin Farinier — 7/41

Introduction
Motivating Example

define SIZE

void get_secret (char secr []) {
// Retrieve the secret
} int main (int argc , char *argv []) {

char secr[SIZE];
void read_input (char src [], char dst []) { char inpt[SIZE];

int i = 0;
while (src[i]) { if (argc != 2) return 0;

dst[i] = src[i];
i++; get_secret (secr);

} read_input (argv [1] , inpt);
}

if (validate (secr , inpt)) {
int validate (char secr [], char inpt []) { printf (" Success !\n");

int b = 1; }
for (int i = 0; i < SIZE; i++) { else {

b &= secr[i] == inpt[i]; printf (" Failure ...\n");
} }
return b; }

}

Goal
Find an input such that the execution reach the “Success!” branch

June 24, 2020 — Benjamin Farinier — 7/41

Introduction
Motivating Example

define SIZE

void get_secret (char secr []) {
// Retrieve the secret
} int main (int argc , char *argv []) {

char secr[SIZE];
void read_input (char src [], char dst []) { char inpt[SIZE];

int i = 0;
while (src[i]) { if (argc != 2) return 0;

dst[i] = src[i];
i++; get_secret (secr);

} read_input (argv [1] , inpt);
}

if (validate (secr , inpt)) {
int validate (char secr [], char inpt []) { printf (" Success !\n");

int b = 1; }
for (int i = 0; i < SIZE; i++) { else {

b &= secr[i] == inpt[i]; printf (" Failure ...\n");
} }
return b; }

}

i : input m: memory
s: secret p : stack pointer

∃i .∃s.∃m0.∃p0.

p1 , p0 − SIZE
p2 , p1 − SIZE
m1 , m0 [p1 . . p1 + SIZE− 1]← s
m2 , m1 [p2 . . p2 + N − 1]← i

m2 [p1 . . p1 + SIZE− 1] = m2 [p2 . . p2 + SIZE− 1]
June 24, 2020 — Benjamin Farinier — 7/41

Introduction
Binary-Level Semantics

∃i .∃s.∃m0.∃p0.

p1 , p0 − SIZE
p2 , p1 − SIZE
m1 , m0 [p1 . . p1 + SIZE− 1]← s
m2 , m1 [p2 . . p2 + N − 1]← i

m2 [p1 . . p1 + SIZE− 1] = m2 [p2 . . p2 + SIZE− 1]

oversimplified formula!

The real formula is about 2130
reads and 456 writes

Unrolling-based verification techniques (BMC, SE)
• may produce huge formulas
• with a high number of reads and writes

In some extreme cases, solvers may spend hours on these formulas

ASPack case study: 293 000 reads, 58 000 writes
⇒ 24 hours of resolution !

June 24, 2020 — Benjamin Farinier — 8/41

Introduction
Binary-Level Semantics

∃i .∃s.∃m0.∃p0.

p1 , p0 − SIZE
p2 , p1 − SIZE
m1 , m0 [p1 . . p1 + SIZE− 1]← s
m2 , m1 [p2 . . p2 + N − 1]← i

m2 [p1 . . p1 + SIZE− 1] = m2 [p2 . . p2 + SIZE− 1]

oversimplified formula!

The real formula is about 2130
reads and 456 writes

Unrolling-based verification techniques (BMC, SE)
• may produce huge formulas
• with a high number of reads and writes

In some extreme cases, solvers may spend hours on these formulas

ASPack case study: 293 000 reads, 58 000 writes
⇒ 24 hours of resolution !

June 24, 2020 — Benjamin Farinier — 8/41

Introduction
Security Is Not Safety

Sending the formula to a solver:
⇒
{
s[0 . . SIZE−1] = 0, i[0 . . SIZE−1] = 0, . . .

}
“If the secret is 0, then you can choose 0
as an input.”

Sure, that is true...
but a false positive in practice
• the secret will not likely be 0
⇒ the execution will not reach the

“Success” branch

Threat models make security 6= safety

A better formalization:
• We do not have control over s, m0 and p0
• These variables should be universally quantified
⇒ This is where the problems begin...

June 24, 2020 — Benjamin Farinier — 9/41

Introduction
Security Is Not Safety

Sending the formula to a solver:
⇒
{
s[0 . . SIZE−1] = 0, i[0 . . SIZE−1] = 0, . . .

}
“If the secret is 0, then you can choose 0
as an input.”

Sure, that is true...
but a false positive in practice
• the secret will not likely be 0
⇒ the execution will not reach the

“Success” branch

Threat models make security 6= safety

A better formalization:
• We do not have control over s, m0 and p0
• These variables should be universally quantified
⇒ This is where the problems begin...

June 24, 2020 — Benjamin Farinier — 9/41

Introduction
Problems

• Symbolic Execution (SE)
◦ under-approximation verification technique
◦ heavily relies on SMT solvers

• Application to vulnerability analysis
◦ requires to move from source analysis to binary analysis
◦ modeling threat models introduces universal quantifiers

• Problems
◦ finding a model for a ∀-formula is difficult
◦ going low-level significantly increases formula size
⇒ The Death of SMT Solvers

June 24, 2020 — Benjamin Farinier — 10/41

Introduction
Outline

0 Introduction

1 Model Generation for Quantified Formulas: A Taint-Based Approach

2 Arrays Made Simpler: An Efficient, Scalable and Thorough
Preprocessing

3 Get Rid of False Positives with Robust Symbolic Execution

4 Conclusion

June 24, 2020 — Benjamin Farinier — 11/41

Section 1

Model Generation for Quantified Formulas:
A Taint-Based Approach

June 24, 2020 — Benjamin Farinier — 12/41

Model Generation for Quantified Formulas
Overview

• Challenge
◦ Deal with quantified-formulas and model generation
◦ Notoriously hard! (undecidable)

• Existing approaches
◦ Complete but costly for very specific theories
◦ Incomplete but efficient for unsat/unknown
◦ Costly or too restricted for model generation

• Our proposal
◦ sat/unknown and model generation
◦ Incomplete but efficient, generic, theory independent
◦ Reuse state-of-the-art solvers as much as possible

Published in Computer Aided Verification 30th, Oxford, UK, 2018 [CAV18]
Presented in Approches Formelles dans l’Assistance au Développement de
Logiciels, Grenoble, France, 2018 [AFADL18]

June 24, 2020 — Benjamin Farinier — 13/41

Model Generation for Quantified Formulas
Toy Example

int main () {
int a = input ();
int b = input ();

int x = rand ();

if (a * x + b > 0) {
analyze_me ();

}
else {

...
}

}

We propose a way to infer
such conditions

• Quantified reachability condition:
∀x .ax + b > 0

• Generalizable solutions of ax + b > 0 have
to be independent from x
◦ A bad solution:

a = 1 ∧ x = 1 ∧ b = 0
◦ A good solution:

a = 0 ∧ x = 1 ∧ b = 1
• The constraint a = 0 is the independence
condition

• Quantifier-free reachability condition:
(ax + b > 0) ∧ (a = 0)

June 24, 2020 — Benjamin Farinier — 14/41

Model Generation for Quantified Formulas
Our Proposal in a Nutshell

∀x .Φ (x , a) Ψ (a) Φ (x , a)
∧ Ψ (a)

sat(x , a) unsat

sat(a) unknown

sic inference
Sufficient
Independent
Condition QF-solver

June 24, 2020 — Benjamin Farinier — 15/41

Model Generation for Quantified Formulas
Sufficient Independence Condition (sic)

Sufficient Independence Condition (sic)
A sic for a formula Φ (x, a) with regard to x is a formula Ψ (a) such that
Ψ (a) |= (∀x.∀y .Φ (x, a)⇔ Φ (y , a)).

• If Φ , ax + b > 0 then a = 0 is a sicΦ,x .
• If ∆ , (t [a]← b) [c] then a = c is a sic∆,t .
• ⊥ is always a sic, but a useless one...

formula indep.

Model generalization
• Let Φ (x, a) a formula and Ψ (a) a sicΦ,x .
• If there exists an interpretation {x, a} such that {x, a} |= Ψ (a) ∧ Φ (x, a),
then {a} |= ∀x.Φ (x, a).

June 24, 2020 — Benjamin Farinier — 16/41

Model Generation for Quantified Formulas
Weakest Independence Condition (wic)

Weakest Independence Condition (wic)
A wic for a formula Φ (x, a) with regard to x is a sicΦ,x Π such that, for any
other sicΦ,x Ψ, Ψ |= Π.

• Both sic a = 0 and a = c presented earlier are wic.
• Ω , ∀x.∀y .(Φ(x, a)⇔ Φ(y , a)) is always a wicΦ,x , but involves quantifiers
• A formula Π is a wicΦ,x if and only if Π ≡ Ω.

Model specialization
• Let Φ (x, a) a formula and Π(a) a wicΦ,x .
• If there exists an interp. {a} such that {a} |= ∀x.Φ (x, a), then
{x, a} |= Π (a) ∧ Φ (x, a) for any valuation x of x.

June 24, 2020 — Benjamin Farinier — 17/41

Model Generation for Quantified Formulas
Taint-based sic inference

Proposition
• If theorySIC(f , φi , ψi , x) computes a sicf (φi),x ,
then inferSIC (Φ, x) computes a sicΦ,x .

Function inferSIC(Φ,x):
Input: Φ a formula and x a set of targeted variables
Output: Ψ a sicΦ,x

either Φ is a constant
return >

either Φ is a variable v
return v /∈ x

either Φ is a function f (φ1, . , φn)
Let ψi , inferSIC (φi , x) for all i ∈ {1, . , n}
Let Ψ , theorySIC (f , (φ1,., φn) , (ψ1,., ψn) , x)
return Ψ ∨

∧
i ψi

June 24, 2020 — Benjamin Farinier — 18/41

syntactic part
a and b indepx f (a, b) indepx

semantic part
a indepx and a = 0 a · ∗ indepx

Model Generation for Quantified Formulas
Taint-based sic inference

Proposition
• If theorySIC(f , φi , ψi , x) computes a sicf (φi),x ,
then inferSIC (Φ, x) computes a sicΦ,x .

Function inferSIC(Φ,x):
Input: Φ a formula and x a set of targeted variables
Output: Ψ a sicΦ,x

either Φ is a constant
return >

either Φ is a variable v
return v /∈ x

either Φ is a function f (φ1, . , φn)
Let ψi , inferSIC (φi , x) for all i ∈ {1, . , n}
Let Ψ , theorySIC (f , (φ1,., φn) , (ψ1,., ψn) , x)
return Ψ ∨

∧
i ψi

June 24, 2020 — Benjamin Farinier — 18/41

syntactic part
a and b indepx f (a, b) indepx

semantic part
a indepx and a = 0 a · ∗ indepx

Model Generation for Quantified Formulas
Theory-dependent sic refinements

theorySIC defined as a recursive function
(a⇒ b)• , (a• ∧ a = ⊥) ∨ (b• ∧ b = >)
(a ∧ b)• , (a• ∧ a = ⊥) ∨ (b• ∧ b = ⊥)
(a ∨ b)• , (a• ∧ a = >) ∨ (b• ∧ b = >)

(ite c a b)• , (c• ∧ ite c a• b•) ∨ (a• ∧ b• ∧ a = b)

(an ∧ bn)• , (a•n ∧ an = 0n) ∨ (b•n ∧ bn = 0n)
(an ∨ bn)• , (a•n ∧ an = 1n) ∨ (b•n ∧ bn = 1n)
(an × bn)• , (a•n ∧ an = 0n) ∨ (b•n ∧ bn = 0n)

(an � bn)• , (b•n ∧ bn ≥ n)

((a [i]← e) [j])• , (ite (i = j) e (a [j]))•

, ((i = j)• ∧ (ite (i = j) e• (a [j])•))
∨ (e• ∧ (a [j])• ∧ (e = a [j]))

, (i• ∧ j• ∧ (ite (i = j) e• (a [j])•))
∨ (e• ∧ (a [j])• ∧ (e = a [j]))

June 24, 2020 — Benjamin Farinier — 19/41

Model Generation for Quantified Formulas
Experimental Evaluation

Best approaches
Z3 Btor• Btor• . Z3

SM
T

-L
IB sat 261 399 485

unsat 165 N/A 165
unknown 843 870 619
total time 270 150 350 94 610

B
in

se
c sat 953 1042 1067

unsat 319 N/A 319
unknown 149 379 35
total time 64 761 1 152 1 169

GRUB example
Z3 Btor•

sat 1 540
unsat 42 N/A

unknown 852 355
total time 159 765 16 732

Complementarity with existing solvers (sat instances)
CVC4• Z3• Btor•

SMT-LIB CVC4 -10 +168 [252] -10 +325 [409]
Z3 -119 +224 [485] -86 +224 [485]

Binsec CVC4 -25 +28 [979] -25 +116 [1067]
Z3 -25 +114 [1067] -25 +114 [1067]

solver•: solver enhanced with our method

Boolector: an efficient QF-solver for
bitvectors and arrays

June 24, 2020 — Benjamin Farinier — 20/41

Section 2

Arrays Made Simpler: An Efficient,
Scalable and Thorough Preprocessing

June 24, 2020 — Benjamin Farinier — 21/41

Arrays Made Simpler
Overview

• Challenge
◦ Array theory useful for modelling memory or data structures...
◦ ...but a bottleneck for resolution of large formulas (BMC, SE)

• Existing approaches
◦ General decision procedures for the theory of arrays
◦ Dedicated handling of arrays inside tools

• Our proposal
◦ fas, an efficient simplificationsimplification for array theory
⇒ Improves existing solvers

Published in Logic for Programming, Artificial Intelligence
and Reasoning, Awassa, Ethiopia, 2018 [LPAR18]
Presented in Journées Francophones des Langages Applicatifs,
Banyuls-sur-Mer, France, 2018 [JFLA18]

Y/N

solver

formula

code

smt

qf

June 24, 2020 — Benjamin Farinier — 22/41

Arrays Made Simpler
Array Theory

Two basic operations on arrays
• Reading in a at index i ∈ I: a [i]
• Writing in a an element e ∈ E at index i ∈ I: a [i]← e

· [·] :Array I E → I → E
· [·]← · :Array I E → I → E → Array I E

row-axiom: ∀a i j e. (a [i]← e) [j] =
{

e if i = j
a [j] otherwise

Prevalent in software analysis
• Modelling memory
• Abstracting data structure (map,

queue, stack...)

Hard to solve
• NP-complete
• Read-Over-Write (row) may
require case-splits

June 24, 2020 — Benjamin Farinier — 23/41

Arrays Made Simpler
Arrays in Practice

Unrolling-based verification techniques (BMC, SE)
• may produce huge formula
• high number of reads and writes

In some extremes cases, solvers may spend hours on these formulas

Without proper simplification,
array theory might become a bottleneck for resolution

What should we simplify ? Read-Over-Write (row)!

June 24, 2020 — Benjamin Farinier — 24/41

Arrays Made Simpler
ROW Simplification

An example coming from binary analysis
esp0 : BitVec16
mem0 : Array BitVec16 BitVec16

assert (esp0 > 61440)
mem1 , mem0 [esp0 − 16]← 1415
esp1 , esp0 − 64
eax0 , mem1 [esp1 + 48]
assert (mem1 [eax0] = 9265)

esp0 : BitVec16
mem0 : Array BitVec16 BitVec16

assert (esp0 > 61440)
assert (mem0 [1415] = 9265)

These simplifications depend on two factors
• The equality check procedure

verify that esp1 + 48 = esp0 − 16
⇒ precise reasoning: base normalization + abstract domains

• The underlying representation of an array
remember that mem1 [esp1 + 48] = 1415

⇒ scalability issue: list-map representation

June 24, 2020 — Benjamin Farinier — 25/41

Arrays Made Simpler
Improving scalability: list-map representation

@ebp+59 23

@ebp+07 81

@ebp+64 06

@ebp+28 62

@esp+08 99

@esp+86 28

@esp+03 48

@esp+25 34

. . .

How to update
Given a write of e at index i
• Is i comparable with indices of
elements in the head?

• If so add (i , e) in this map
• Else add a new head map
containing only (i , e)

How to simplify row
Given a read at index j
• Is j comparable with indices of
elements in the head?

• If so, look for (i , e) with i=j
◦ if succeeds then return e
◦ else recurse on next map

• Else stop

June 24, 2020 — Benjamin Farinier — 26/41

Arrays Made Simpler
Precise reasoning: base normalization and abstract domains

Propagate “variable+constant” terms
• If y , z + 1 then x , y + 2 x , z + 3
• Together with associativity, commutativity...
⇒ Reduce the number of bases

Associate to every indices i an abstract domain i]

• If i] u j] = ⊥ then (a [i]← e) [j] = a [j]
• Integrated in the list-map representation
⇒ Prove disequality between different bases

June 24, 2020 — Benjamin Farinier — 27/41

Arrays Made Simpler
Impact of the Simplification: Medium-Size Formulas

• 6,590 x 3 medium-size formulas from static SE
• timeout = 1,000 seconds

simpl. #timeout and resolution time #rowtime Boolector Yices Z3

co
nc
re
te default 61 0 163 2 69 0 872 866,155

fas 85 0 94 2 68 0 244 1,318
fas-itv 111 0 94 2 68 0 224 1,318

in
te
rv
al default 65 0 2,584 2 465 31 155,992 866,155

fas 99 0 2,245 2 487 25 126,806 531,654
fas-itv 118 0 755 2 140 14 37,269 205,733

sy
m
bo

lic default 61 0 6,173 3 1,961 65 305,619 866,155
fas 91 0 6,117 3 1,965 66 158,635 531,654

fas-itv 111 0 4,767 2 1,108 43 80,569 295,333

June 24, 2020 — Benjamin Farinier — 28/41

Arrays Made Simpler
Impact of the Simplification: Very Large Formulas

• 29 x 3 very large formulas from dynamic SE
• timeout = 1,000 seconds

simpl. #timeout and resolution time #rowtime Boolector Yices Z3

co
nc
re
te default 44 10 159 4 1,098 26 3.33 1,120,798

fas-list 1,108 8 845 4 198 10 918 456,915
fas 196 8 820 4 196 10 922 456,915

fas-itv 210 4 654 1 12 4 1,120 0

in
te
rv
al default 44 12 131 12 596 27 0.19 1,120,798

fas-list 222 12 129 12 595 26 236 657,594
fas 231 12 129 12 597 26 291 657,594

fas-itv 237 12 58 12 28 19 81 651,449

sy
m
bo

lic default 40 12 1,522 12 1,961 27 0.13 1,120,798
fas-list 187 11 1,199 12 2,018 26 486 657,594

fas 194 11 1,212 12 2,081 26 481 657,594
fas-itv 200 11 1,205 12 2,063 26 416 657,594

June 24, 2020 — Benjamin Farinier — 29/41

Arrays Made Simpler
Focus on Specific Case: the ASPack Example

• Huge formula obtained from the
ASPack packing tool

• 293 000 rows
• 24 hours of resolution!

0 100 200 300 400
·103

0

2

4

6
·103

List lookup bound

T
im

e
in

se
co
nd

resolution
simplification

Using fas
• #row reduced to 2 467
• 14 sec for resolution
• 61 sec for preprocessing

Using list representation
• Same result with a bound of
385 024 and beyond...

• ...but 53 min preprocessing

June 24, 2020 — Benjamin Farinier — 30/41

Section 3

Get Rid of False Positives with Robust Symbolic Execution

June 24, 2020 — Benjamin Farinier — 31/41

Robust Symbolic Execution
Overview

• Symbolic Execution (SE)
◦ under-approximation verification technique
◦ heavily relies on SMT solvers
◦ should be exempt of false positives

• In practice, false positives exist
◦ misspecified abstractions, initial state...
◦ some ad hoc workarounds, no real solution

• Our proposal: Robust Symbolic Execution
◦ distinguish between controlled and uncontrolled inputs
◦ robust solutions are independent of uncontrolled inputs
◦ practical application of [CAV18] and [LPAR18]

Presented in Journées Francophones des Langages Applicatifs,
Les Rousses, France, 2019 [JFLA19]

June 24, 2020 — Benjamin Farinier — 32/41

Robust Symbolic Execution
Motivating Example Remembered

define SIZE

void get_secret (char secr []) {
// Retrieve the secret
} int main (int argc , char *argv []) {

char secr[SIZE];
void read_input (char src [], char dst []) { char inpt[SIZE];

int i = 0;
while (src[i]) { if (argc != 2) return 0;

dst[i] = src[i];
i++; get_secret (secr);

} read_input (argv [1] , inpt);
}

if (validate (secr , inpt)) {
int validate (char secr [], char inpt []) { printf (" Success !\n");

int b = 1; }
for (int i = 0; i < SIZE; i++) { else {

b &= secr[i] == inpt[i]; printf (" Failure ...\n");
} }
return b; }

}

i : input m: memory
s: secret p : stack pointer

∃i .∃s.∃m0.∃p0.

p1 , p0 − SIZE
p2 , p1 − SIZE
m1 , m0 [p1 . . p1 + SIZE− 1]← s
m2 , m1 [p2 . . p2 + N − 1]← i

m2 [p1 . . p1 + SIZE− 1] = m2 [p2 . . p2 + SIZE− 1]
June 24, 2020 — Benjamin Farinier — 33/41

Robust Symbolic Execution
Robust Symbolic Execution in Practice

∃i .∃s.∃m0.∃p0.
p1 , p0 − SIZE
p2 , p1 − SIZE
m1 , m0 [p1 . . p1 + SIZE− 1]← s
m2 , m1 [p2 . . p2 + N − 1]← i

m2 [p1 . . p1 + SIZE− 1] = m2 [p2 . . p2 + SIZE− 1]

Sending the formula to a solver:
⇒
{
s[0 . . SIZE−1] = 0, i[0 . . SIZE−1] = 0, . . .

}
• This is a false positive

A better formalization: Robust SE
• We do not have control over s, m0 and p0
• These variables should be universally quantified

June 24, 2020 — Benjamin Farinier — 34/41

Robust Symbolic Execution
Robust Symbolic Execution in Practice

∃i .∀s.∀m0.∀p0.
p1 , p0 − SIZE
p2 , p1 − SIZE
m1 , m0 [p1 . . p1 + SIZE− 1]← s
m2 , m1 [p2 . . p2 + N − 1]← i

m2 [p1 . . p1 + SIZE− 1] = m2 [p2 . . p2 + SIZE− 1]

Problems:
• finding a model for a ∀-formula is difficult
• going low-level significantly increases formula size
⇒ The Death of SMT Solvers

June 24, 2020 — Benjamin Farinier — 34/41

Robust Symbolic Execution
Robust Symbolic Execution in Practice

∃i .∃s. ∃m0.∀p0.
p1 , p0 − SIZE
p2 , p1 − SIZE
m1 , m0 [p0 − SIZE . . p0 − 1]← s
m2 , m1 [p0 − 2 · SIZE . . p0 − 2 · SIZE + N − 1]← i

i [0 . . SIZE− 1] = i [SIZE . . 2 · SIZE− 1]
∧ N ≥ 2 · SIZE

Problems:
• finding a model for a ∀-formula is difficult [CAV18]
• going low-level significantly increases formula size [LPAR18]
⇒ The Death of SMT Solvers

For example with SIZE = 8,
• input abcdefghabcdefgh leads to the “Success!” branch
• buffer overflow in read_input

June 24, 2020 — Benjamin Farinier — 34/41

Robust Symbolic Execution
Experimental Evaluation

• set of crackme challenges
• compare true and false positives

SE classic
true false

positives positives unknown
Boolector 12 11 1
CVC4 7 9 8
Yices 7 11 6
Z3 12 12 0

SE robust
true false

positives positives unknown
Boolector N/A N/A 24
CVC4 5 0 19
Yices N/A N/A 24
Z3 7 0 17

SE robust + elim.
true false

positives positives unknown
Boolector 12 0 12
CVC4 7 0 17
Yices 7 0 17
Z3 12 0 12

June 24, 2020 — Benjamin Farinier — 35/41

Robust Symbolic Execution
Experimental Evaluation

Back to 28: GRUB2 Authentication Bypass
• Original version: press Backspace 28 times to get a rescue shell
• Case study: same vulnerable code turned into a crackme challenge

• SE classic:
incorrect solution

• SE robust:
solvers timeout

• SE robust+ elim.:
correct solution in 80s

• SE robust+ elim.+ simpl.:
correct solution in 30s

June 24, 2020 — Benjamin Farinier — 36/41

Section 4

Conclusion

June 24, 2020 — Benjamin Farinier — 37/41

Conclusion
Summary

• Symbolic Execution (SE)
◦ under-approximation verification technique
◦ heavily relies on SMT solvers

• Application to vulnerability analysis
◦ requires to move from source analysis to binary analysis
◦ modeling threat models introduces universal quantifiers

• Problems
◦ finding a model for a ∀-formula is difficult
◦ going low-level significantly increases formula size
⇒ The Death of SMT Solvers

June 24, 2020 — Benjamin Farinier — 38/41

Conclusion
Contributions

1 Model Generation for Quantified Formulas
◦ Proposed a novel and generic taint-based approach
◦ Proved its correctness and its efficiency
◦ Presented an implementation for arrays and bit-vectors
◦ Evaluated on SMT-LIB and formulas generated by Symbolic Execution

2 Arrays Made Simpler
◦ Presented fas, a simplification dedicated to the theory of arrays
◦ Geared at eliminating row, based on a dedicated data structure, original

simplifications and low-cost reasoning
◦ Evaluated in different settings on very large formulas

3 Robust Symbolic Execution
◦ Highlighted the problem of false positives in classic Symbolic Execution
◦ Introduced formally the framework of Robust Symbolic Execution
◦ Implemented a proof of concept in the binary analyser Binsec

June 24, 2020 — Benjamin Farinier — 39/41

Conclusion
Perspectives

1 Model Generation for Quantified Formulas
◦ More precise inference mechanisms of independence conditions
◦ Identification of subclasses for which inferring WIC is feasible
◦ Combination with other quantifier instantiation techniques

2 Arrays Made Simpler
◦ Deeper integration inside a dedicated array solver
◦ Adding more expressive domain reasoning

3 Robust Symbolic Execution
◦ Precise evaluation of our semi-automatic incremental specification procedure
◦ Thorough comparison of Robust Symbolic Execution to other techniques

4 Beyond that
◦ Restrict to “there exists” and “for all” quantifications is not nuanced enough
◦ Might want to say that an event “almost always” or “almost never” occurs
⇒ Requires notions of probabilities or model counting

June 24, 2020 — Benjamin Farinier — 40/41

Conclusion
Bibliography

Benjamin Farinier, S. Bardin, R. Bonichon, and M. Potet.
Model generation for quantified formulas: A taint-based approach.
In Computer Aided Verification - 30th International Conference, CAV 2018, Oxford, UK, July
14-17, 2018, 2018.

Benjamin Farinier, R. David, S. Bardin, and M. Lemerre.
Arrays made simpler: An efficient, scalable and thorough preprocessing.
In LPAR-22. 22nd International Conference on Logic for Programming, Artificial Intelligence
and Reasoning, Awassa, Ethiopia, November 16-21, 2018, 2018.

Benjamin Farinier, S. Bardin, R. Bonichon, and M. Potet.
Génération de modèles pour les formules quantifiées : une approche basée sur la teinte.
In Approches Formelles dans l’Assistance au Développement de Logiciels, AFADL 2018,
Grenoble, France, June 13-15, 2018, 2018.

Benjamin Farinier, R. David, and S. Bardin.
Simplification efficace pour la théorie des tableaux.
In Journées Francophones des Langages Applicatifs, JFLA 2018, Banyuls-sur-Mer, France,
January 24-27, 2018, 2018.

Benjamin Farinier, S. Bardin, R. Bonichon, and M. Potet.
En finir avec les faux positifs grâce à l’exécution symbolique robuste.
In Journées Francophones des Langages Applicatifs, JFLA 2019, Les Rousses, France, January
30-February 2, 2019, 2019.

June 24, 2020 — Benjamin Farinier — 41/41

	Model Generation for Quantified Formulas: A Taint-Based Approach
	Arrays Made Simpler: An Efficient, Scalable and Thorough Preprocessing
	Get Rid of False Positives with Robust Symbolic Execution
	Conclusion

